

Feline Infectious Peritonitis: Is There Hope?

Alicia Beets, DVM, Residency Trained in Internal Medicine MedVet New Orleans

Objectives

- Overview of feline infectious peritonitis (FIP)
 - Epidemiology
 - Clinical presentation
 - Diagnostics
- Historic therapies
- Newer therapies
- Case examples
- Questions

Overview

- History of FIP
 - 1963 syndrome of immune-mediated vasculitis and pyogranulomatous inflammatory reaction.
 - 1978 virus was identified (ssRNA virus, pleomorphic, enveloped)
 - Present #1 cause of infectious-related death (previously FeLV)
 - Avirulent feline coronavirus (FCoV) replicating in enterocytes. Mutation occurs leading to virus replication in macrophages, which is the key pathogenic event to FIP development
 - 0.55% of new feline and 0.36% total feline cases were FIP presented for North American Veterinary teaching hospitals (Rohrbach et al 2001.)

Epidemiology

- Prevalence
 - Antibodies against FCoVs found in:
 - 50% cats in USA overall
 - 80-90% of the animals living in catteries or multiple-cat households
 - Up to 50% of solitary cats
 - only 1-5% develop FIP
 - Shelters, catteries, or any multicat household has highest risk namely due to feces as the main route of transmission
 - Example: feral cats tested upon intake to shelter and at 1-2 week intervals. 15% positive at admission. Rapid increase after.
- Risk
 - Age young and immunocompromised cats have less controlled mutation or older
 - > 50% cats with FIP are under 1yo
 - Cheetah has deficiency in their cellular immunity that predisposes them to FIP
 - Young, male, purebred, sexually intact (Pesteanu-Somogyi et al 2006)
 - 1.3% in purebreds vs 0.35% in mixed breed cats presented to NCState

Epidemiology

- Oronasal
 - Mainly shed in feces. In early infection, found in saliva, respiratory secretions or urine
 - Intermittent shedding for 10mths, some years to lifelong
 - Higher the antibody titer → more likely to shed and more consistently
 - FIP-infected cats still shed nonmutated CoV in feces, but usually less once FIP has developed
- Secondary: grooming, shared bowls, close contact, transplacental
 - Most kittens removed from virus-shedding adult at 5-6 weeks of age do not become infected. Usually infected at 6-8wks as maternal antibodies wane.
 - CoV can survive a week outside of cat if dry → fomites
- No FIP-causing FCoV found in feces or other excretions
- Unless iatrogenic, only FCoV is cat-to-cat, not FIP

FCoV vs. FIP

- Feline Coronavirus (FCoV)
 - Asymptomatic
 - Replication in enterocytes via enzyme aminopeptidase-N
 of brush border → diarrhea
- FIP
 - Spontaneous mutation at genes 3C or 7B, but at varied locations
 - 99.5% homology of parent virus to mutated
 - Mutation allow phagocytosis by macrophages to bind to ribosomes in the macrophages → replication in macrophages
 - Higher viral load makes odds of mutation higher
 - Mutation favored by: Young age, breed, immune status, stress, glucocorticoid therapy, surgery, amount of virus, reinfection rate in multiple-cat households

Disease Progression

- Within 14 days after mutation, it's body-wide (including CNS)
- Theories:
 - 1) FCoV-infected macrophages leave the blood and allow virus to enter tissues. Virus attract antibodies leading to complement fixation and more macrophages are drawn in. Granulomatous lesions are made.
 - 2) Circulating immune complexes exiting circulation into vessel walls leading to development of granulomatous lesions.
 - Ultimately, both bring in more inflammatory mediators leading to vascular permeability and retraction of capillary endothelial cells allows plasma proteins to escape (protein-rich exudate)
 - Immune-mediated vasculitis leads to DIC

Antibody-dependent Enhancement

- Controversial
- Theory that antibodies (vaccination) already being present leads to higher uptake of FCoV into macrophages
- Antibody positive cats showed earlier development of disease, as well as higher mortality
- Complicated, as some studies show cat naturally reinfected by FCoV had no evidence of ADE. Has driven vaccination concern.

Clinical Signs

- Feline coronavirus
 - None
 - Upper respiratory signs
 - Diarrhea, vomiting
 - Rare stunted growth or chronic v/d/weight loss
- FIP
 - Multiorgan involvement → vasculitis and organ failure due to damaged vessels that supply organs

Clinical signs of FIP

- Fever
- Weight loss
- Hyporexia
- Jaundice
- Abdominal mass on palpation ileocecocolic junction
- Ocular retinal lesions, uveitis
- Neurologic
 - 13% of FIP cats have neuro signs
 - Ataxia, nystagmus, seizures followed by incoordination, intention tremors, hyperesthesia, behavior change, or cranial nerve defects
 - 75% hydrocephalus (lacking with crypto, toxo, lymphoma)

FIP Forms

- 1) Effusive ("wet")
 - Immune-mediated, fibrinous-granulomatous serositis (Addie et al. 2009)
 - Fibrinous peritonitis
 - Pleuritis
 - Pericarditis
 - Effusions in abdomen, thorax, pericardium
- 2) Non-effusive ("dry")
 - No effusion
 - Pyogranulomatous lesions in various organs and around vessels: eye, CNS (Addie et al. 2009, Pedersen 2009, 2014)
- 3) Mixed

Effusion

- 62% ascites, 17% thoracic, 21% other
- Less than 50% of cats presenting with effusion are due to FIP
 - 30% of thoracic
 - 30% thoracoabdominal
 - 60% ascites

Bloodwork Changes

- CBC
 - WBC variable
 - Thrombocytopenia due to DIC
 - Elevated D-Dimer, elevated fibrinogen degradation products
 - Anemia (65%)
 - Secondary IMHA or heinz bodies
 - 50% FIP cats have nonspecific bone marrow changes at necropsy
- Chemistry
 - Elevated TP (50% with effusion, 70% without effusion)
 - Hyperglobulinemia (y-globulins)
 - Reduced albumin: globulin is better than albumin or globulin level alone
 - Can be monoclonal or polyclonal making electrophoresis less helpful
 - Hyperbilirubinemia hepatic necrosis (despite unremarkable ALP/ALT)
 - Compromised metabolism and excretion with FIP.
 - Not typical hemolysis, liver, or cholestasis.

Diagnostics

- Effusion testing
 - Variable grossly.
 - Modified transudate or exudate
 - TP > 35g/L, low cellularity (<1000 nucleated cells/ml)
 - LDH >300 IU/L (released by inflammatory cells)
 - Elevated alpha-amylase (pancreas releases)
 - Alpha-1 acid glycoprotein in effusion > 1500ug/ml with FIP
 - Cytology: pyogranulomatous
 - Rivalta's Test to differentiate transudate vs. exudate
 - Positive if high protein content, fibrin, and inflammatory mediators
 - Add one drop to distilled water/acetic acid tube
 - Drop retains its shape, stays at surface, or slowly floats = positive
 - PPV 86%, NPV 97%. Can have false positive with bacterial peritonitis but cytology/culture differentiates

Diagnostics

- Histopathology
 - Perivascular mixed inflammation with macrophages, neutrophils, lymphs, and plasma cells
 - Pyogranulomatous inflammation

• Lymphoid tissues show depletion from apoptosis

Figure 3 – effusive Figures 4-8 - dry

Diagnostics

- CSF
 - Normal or non-specific inflammatory
- Antibody (titer)
 - Presence does not confirm FIP.
 - Absence does not exclude FIP.
 - Only use if:
 - Diagnosis of FCoV-induced enteritis or narrow FIP
 - Healthy cat that has had contact with FCoV-cat
 - Breeding facilities
 - Screening cattery
 - Screening a cat to enter a FCoV-free population

Antigen

- Antibody antigen complex detection
 - ELISA PPV 67% with many false positives
- Antigen in tissue
 - Immunohistochemistry
 - Positive staining of macrophages in effusion predicts FIP 100%
 - Cannot differentiate between harmless nonmutated FCoV and mutated FIP-causing FCoV
 - Only FIP-causing virus can replicate in macrophages → positive staining
 - Therefore, use intracellular FCoV antigen by immunoflourescene or immunohistochemistry with histopathology whenever possible for most definitive.
 - Immunofluorescence staining of antigen in effusion
 - PPV 100%
 - NPV 57% can't rule it out if negative staining

mRNA PCR

- Sample: EDTA blood, biopsy/aspirate, ascites, pleural effusion
 - Feces only to exclude acute enteric FCoV
- Methodology (Simons et al, 2005):
 - Detects mRNA of the M gene of all known FCoV strains. Therefore, for detection of FIP, only the detection of mRNA outside of the gi tract is indicative
 - Highly specific
 - If multi-test, NPV and PPV are nearly 100% for confirmation or ruling out

Interpretation

- High Positive (> 50 copies/specimen) clinical symptoms)
- Low positive (<50 copies/specimen) clinical symptoms)
- Negative

FIP (interpretation must be correlated to

FIP (interpretation must be correlated to

FIP viral mRNA not detectable

Therapy

- FCoV positive, asymptomatic
 - Lower stress only
- FCoV positive with enteritis
 - Most are self-limiting
 - Support
 - Steroid may aid diarrhea, but this is contraindicated with harmless FCoV

FIP Therapy - Historical

- Steroid
- Antibiotics
- Antivirals
 - Ribavirin not effective with FIP, high side effects (hemolysis, bone marrow toxicity, liver toxicity)
 - Feline interferon-w
 - No antibody creation even with long-term therapy
 - In vitro, inhibits FCoV replication
 - Human interferon-alpha SQ (high-dose) or oral (low-dose)
 - Common neutralizing antibodies form after 3-7 weeks with high-dose SQ form; not with PO
 - Synergism with ribavirin
 - High-dose SQ may prolong survival a few days
 - Broken down by gastric acid and undetectable when given PO. May have some immunomodulatory properties due to oral lymphoid stimulation → ultimately leads to FIP progression

Prevention

- Only via avoidance of infection with FCoV
- Vaccination
 - Does not prevent FIP or FCoV. Concern of antibody dependent enhancement. Titers can be hard to interpret later.
 - Unclear if no effect vs. small effect
 - Not currently recommended
- Kittens
 - Early weaning at 4-6wks, strict quarantine of queens and kittens, and isolation of queen 2-3 weeks prior to parturition

Household Response

- Contact with FIP suspect or confirmed FIP cat
 - Exposed cat is likely antibody positive, but unlikely to develop FIP.
 - Can monitor antibodies every 6months if desired.
- After a FIP+ feline dies
 - New feline introduction wait 3 months because FCoV remains in environment at least 7 weeks
 - Ideally wait until all cats are antibody negative (may be years)
 - Other felines in household are already exposed. No prevention for those already exposed.
 - Eliminating FCoV from household less younger (<1yo) and feces management +/antibody titer/PCR monitoring

Newer Therapies

Therapy

• Goals: Clinical resolution of illness with normal HCT, TP, Globulin, Albumin, and A: G ratio

- 3 approaches:
 - 1) Modulate patient's immune system
 - 2) Immunosuppress to reduce inflammatory response
 - 3) Antivirals to inhibit viral replication

Immunostimulants

- Staphylococcal A protein (Pedersen 2014)
- Propionibacterium acnes (Weiss et al. 1990)
- Lymphocyte T-cell immunomodulators such as omega interferon (Pedersen 2014)
- Plant extracts such as polyprenyl immunostimulant (PI) (Legendre and Bartges 2009)
- All failed.

Immunosuppression

- To help control signs
- Glucocorticoids (GC)
- Cytokine inhibitors (pentoxifylline, propentofylline)
- Alkylating agents (cyclophosphamide, chlorambucil)
- GC reduce clinical signs, but not curative (Ritz et al 2007, Fischer et al 2011)

Antivirals

- GS-441524
 - Active metabolite of Remdesivir
 - RNA-chain terminator of viral RNA dependent RNA polymerase (Murphy et al 2018, Pedersen et al 2019)
 - Strongly inhibits FIP both in tissue culture and infection
 - Murphy et al 2018:
 - GS-441524 was highly effective at dose of 4mg/kg SQ SID for 12 weeks in 10 cats

GS-441524

- Pederson et al 2019: In vivo effects in both wet and dry form.
 - 31 cats (26 wet, 5 dry) 2mg/kg SQ for 12 weeks.
 - Increased by 4mg/kg if clinical signs worsened.
 - 26 cats successfully completed 12-week course.
 - 18 after one year were healthy.
 - 8 had relapses within 3-84 days.
 - 3 were treated again at same dose and 5 had increased retreatment dose (by 2-4mg/kg).
 - 5 retreated at higher dose remained healthy. Two of the three retreated at lower dose relapsed again and needed third treatment at higher dose. One relapsed again.
 - 25 overall long-term survivors.
 - Adverse effects
 - Injection site reactions #1
 - Conclusions:
 - Safe and effective to give 4mg/kg SQ daily for 12 weeks
 - Higher dose of 5-10mg/kg SQ SID for neuro cases (Dickinson et al 2020)

GS-441524 Therapy

- Commonly used dosage:
 - 4-6mg/kg SQ daily for 12 weeks
 - Wet form, younger cases can respond to lower end of dosage
 - Dry form often requires higher end of dose range
 - Ocular signs (no neuro): 8mg/kg SID for 12 weeks
 - Neuro signs: 10mg/kg SID for 12 weeks
 - Adjust dose weekly with weight
 - PO form (Aura, Mutian) shows lower absorption at high dosages

GS-441524 Therapy

- Complications:
 - Injection site sores
 - Pain upon injection (pH, scarring, wounds)
- Protocol:
 - Response within 24-72hr with normalcy in 2-4 weeks (average 3.85)
 - Estimated success of 80%
 - Failure due to:
 - Misdiagnosis
 - Inadequate dosage
 - Complicating disease
 - Resistance
 - Non-neurologic patients are easier to cure
 - Younger are easier to treat with higher cure rate than >7yo cats

Supplemental Therapy to GS-441524?

- Cap off treatment with higher dosage no benefit
- Concurrent interferon omega or other immunostimulants
- Antiviral (GC376) needs research
- B12, steroid unknown benefit

When to stop **GS-441524?**

- 12 weeks is standard
- If dose increase is needed, this should be given for at least 4 weeks. Course may exceed 84 days.
- Based on clinical picture namely
- Relapses to brain, spine, or eyes
 - Retreat for at least 8 weeks at a dosage at least 5mg/kg higher than initial. Use injectable if dose > 10mg/kg
 - If 15mg/kg dosage and still no impact, likely resistance
 - Most resistance in neurologic cases

Monitoring of GS-441524?

- No documented protocol
- Based on individual concerns
- Monitoring weight, clinical progress, effusion, and labwork
- Commonly CBC/Chem 1-2 weeks after starting therapy, 1 month into therapy, end of therapy, and 1 month after conclusion of therapy

Concerns about safety

- No regulation
- Lack of FDA approval
 - Hopeful in next 2 years
- Questions about purity, pH, dosing, monitoring, and safety
- Unknown complications
- Some sources require CBC/chem, fluid analysis to receive assistance; others are 100% owner driven
- 65.6% owners followed up with veterinarian for monitoring (Jones et al 2021)

GS-441524

- Jones et al 2021
 - Unlicensed, crowd-sourced GS-441524 for FIP suspects
 - 411 surveys via FIP Warriors
 - All had completed at least 84 days of therapy (n = 393)
 - Only 8.7% owners reported significant aid from their vet in treating their cat
 - 30% found GS therapy via a website (23% Facebook); 25% from veterinary guidance
 - 25% had no veterinary help at all to discover therapy
 - 88.2% reported improvement within one week (appetite, movement, fever)
 - Mean cost \$4920 (USD)
 - Complications namely related to owner SQ injection (vocal, pain, wounds at site, etc)

Jones et al. 2021

- Therapies used:
 - 71.7% injectable, 8.2% oral, 20.1% combination
 - Mutian, multiple, Shire, Capella, Hero white or blue cap, other
- Supplemental:
 - Vitamin B1 or B12 41%
 - Steroids 37%
 - Fluids (SQ or IV) 27%
 - Antibiotics 22%
 - Light therapy (photobiomodulation) 11%
 - Anti-nausea 11%
 - Appetite stimulant 1-%
 - Gabapentin 8%

Jones et al -Results

- Results:
 - 96.7% lived (n = 380/393)
 - 54% considered cured
 - 3.3% died despite therapy
 - Wet form (n = 224): 3.6% died
 - Dry form (n = 169): 2.96% died
 - No significant difference in mortality between groups
 - Neurologic signs: 4.7% died
- Relapse (recurrence of signs following the end of 12 wk therapy)
 - 12.7% overall
 - not statistically different with or without neuro/ocular signs at time of diagnosis

CONFERENCE

Remdesivir

- GS-5734
- Prodrug of GS-441524
- Currently FDA approved for COVID-19 under controlled conditions
- Gets broken down to GS immediately in humans, mice, cats, and primates.
- Compared to GS-441524, Remdesivir has higher molecular weight with a varying dilutant.
- Signs of mild liver and kidney toxicity in humans

Other Antivirals

- GC376
 - 3C-like protease inhibitors
 - Pederson et al 2018
 - 20 cats with various forms of FIP
 - 15mg/kg SQ BID for 12 weeks
 - 19/20 regained outward health within 2 weeks
 - Many relapsed
 - 7 cats did well with MST 11.2 mths
 - Excluded neurologic patients
 - Wet or dry form
 - Side effects: pain on injection, sq fibrosis, alopecia, abnormal permanent tooth development if treated before 16-18 weeks of age

Other Antivirals

- Ribavirin
 - Marginal antiviral activity against FIP and toxicity to cats in vivo (Weiss et al 1993)
- Cyclosporin A
 - Cyclophilin inhibitor
 - Inhibits replication of FCoV in vitro (Pfefferle et al 2011, Tanaka et al 2012-13)
- Galanthus nivalis agglutinin (GNA) & nelfinavir (protease inhibitor)
 - In combination, inhibit FCoV replication in vitro (Hshieh et al 2010), but not effective with FIP

Other Therapies

- Itraconazole
 - Increased lymphocyte count and decrease in alpha-1-acid glycoprotein was noted after treatment started
 - Combination with anti-human TNF-alpha monoclonal antibody for those with FIP (Doki et al 2020)
 - 2/3 cats improved, 1/3 failed to respond
 - Itraconazole with prednisolone reduced pleural effusion (Kameshima et al 2020), but status epilepticus developed

Other Available Therapies

- Mefloquine
 - Reduced viral load of FIP without cytotoxic effects (McDonagh et al 2014)
 - Pharmacokinetic studies in cats now available (Izes 2019)
 - Trials against FCoV, FIP, and calicivirus are occurring (Yu et al 2020)
- Hydroxychloroquine
 - Used with interferon, increased antiviral activity against FIP in vitro (Takano et al, 2020)
- Chloroquine
 - Human antimalarial
 - Inhibits FIP virus replication in vitro (Takano et al 2013, McDonagh et al 2014); poor in vivo

♣MEDVET

CONFEREN

- Anti-inflammatory and antiviral properties
- Improved clinical scores but no statistically significant survival improvement
- Increased ALT noted on 10mg/kg twice weekly SQ

Case Examples

Case #1

- 5 month FS DSH
- Previously diagnosed
 - Capella therapy for effusive FIP
- Presented for fever, lethargy, vomit
- PE: ascites, fever, lethargy
- BW: TP > 12, ALT 161, HCT 19%
- Therapy impact:
 - Marked improvement in ascites within one week
 - Weight gain
 - Resolution of fever, improved Alb:Glob
 - Complications: regenerative anemia, thrombocytopenia, neutropenia, ringworm, skin at injection site
 - Multiple transfusions given
 - Successful therapy with last recheck 7mth post-treatment
 - Lymphocytosis, rest wnl

Case #2

- 6-year-old FS DSH
- Presented for hyphema, hyporexia, and lethargy
- BW: non-regenerative anemia, hyperglobulinemia, lymphocytosis
- Diagnostics:
 - FeLV/FIV/HW: negative
 - Toxoplasma IgG/IgM: negative
 - Feline vector panel: negative
 - AUS: splenic change, bilateral suspect renal degenerative changes (although cannot rule out lyphosarcoma/FIP)
 - Splenic aspirate: reactive lymphoid hyperplasia
 - Protein electorphoresis: polyclonal gammopathy
- Tx: steroid, support.
 - Signs improved initially, but then hyperglobulinemia and anemia recurred → further testing declined in favor of empiric GS-441524 therapy (other testing declined)
 - Monitoring with monthly cbc/chemistry
- Successful therapy and now released
- Doing great!

♣MEDVET

CONFERENCE

Case #3

- 7-month-old M Scottish Fold
- Presented 11/23/2019 straining to urinate and lethargy
 - PE: fever (103.6F), rest unremarkable
 - BW 11/23 Glob 6.7, A:G 0.5, Tbili 0.5, HCT 39%, WBC 24.57
 - U/A: pyuria. Culture negative.
 - DDx: FLUTD vs. UTI vs. other
 - Tx: Gabapentin, Buprenorphine, Clavamox
- Re-presented 11/29/2019 diarrhea and tenesmus
 - PE: fever (103.5F), soft tubular structure in abdomen, rest unremarkable
 - BW: Glob 5.6, Alb 3.0, A:G 0.5, Tbili 0.4, WBC 22.55, Neutro 20.8, HCT 34%
 - AUS colonic wall thickening with loss of layering and colonic lymphadenopathy
 - FNA (LN and colon) Granulomatous to pyogranulomatous with evidence of hemorrhage
 - Histoplasma negative
 - Pythium negative
 - Fecal PCR negative
 - Coronavirus titer positive @ >/= 1:12800
- Tx: Mutian (200mg PO SID. Ultimately on 400-450mg PO SID. Average 100mg/1kg BW)
 - Approximately 10days after starting, POCUS showed no ascites or pleural effusion. Subjective improvement in colonic wall thickening.
 - Within about 1 month, globulins and bilirubin normalized. Lymphocytosis occurred.
 - 2/2020 resolution of colonic change on ultrasound with normal labwork
- Now in clinical remission

CONFERENCE

References

- Comprehensive list available upon request.
- Addie D, Belák S, Boucraut-Baralon C, et al. Feline Infectious Peritonitis: ABCD Guidelines on Prevention and Management. Journal of Feline Medicine and Surgery. 2009;11(7):594-604. doi:10.1016/j.jfms.2009.05.008
- Diaz, José V, and Roberto Poma. "Diagnosis and clinical signs of feline infectious peritonitis in the central nervous system." The Canadian veterinary journal = La revue veterinaire canadienne vol. 50,10 (2009): 1091-3.
- Drechsler, Y et al. "Feline Coronavirus in Multicat Environments." Vet Clinics Small Animal 41 (2011) 1133-1169.
- Hartmann, Katrin. "Feline infectious peritonitis." The Veterinary clinics of North America. Small animal practice vol. 35,1 (2005): 39-79, vi. doi:10.1016/j.cvsm.2004.10.011
- Izes, Aaron M et al. "Current status on treatment options for feline infectious peritonitis and SARS-CoV-2 positive cats." The veterinary quarterly vol. 40,1 (2020): 322-330. doi:10.1080/01652176.2020.1845917
- Jones, S.; Novicoff, W.; Nadeau, J.; Evans, S. Unlicensed GS-441524-Like Antiviral Therapy Can Be Effective for at-Home Treatment of Feline Infectious Peritonitis. Animals **2021**, 11, 2257. https://doi.org/10.3390/ani11082257
- Kipar A and Meli ML. "Feline Infectious Peritonitis: Still an Enigma?" Veterinary Pathology, Vol. 51 (2) 505-526, 2014.
- Pedersen NC, Perron M, Bannasch M, Montgomery E, Murakami E, Liepnieks M, Liu H. Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. J Feline Med Surg. 2019 Apr;21(4):271-281. doi: 10.1177/1098612X19825701. Epub 2019 Feb 13. PMID: 30755068; PMCID: PMC6435921.
- Simons et al. "A mRNA PCR for the diagnosis of feline infectious peritonitis." Journal of Virological Methods 124 (2005) 111-116
- Wang, YT., Su, BL., Hsieh, LE. et al. An outbreak of feline infectious peritonitis in a Taiwanese shelter: epidemiologic and molecular evidence for horizontal transmission of a novel type II feline coronavirus. Vet Res 44, 57 (2013). https://doi.org/10.1186/1297-9716-44-57
- Imaging:
 - https://vcahospitals.com/know-your-pet/feline-infectious-peritonitis
 - https://vetcpd.co.uk/product/feline-coronavirus-infectious-peritonitis/
 - · https://www.merckvetmanual.com/generalized-conditions/feline-infectious-peritonitis/overview-of-feline-infectious-peritonitis
 - https://www.aspcapetinsurance.com/resources/domestic-shorthair-cat-facts/
 - https://cats.lovetoknow.com/Scottish Fold Kittens
 - https://criticalcaredvm.com/hyphema-dogs-cats-blood-eyes/
 - https://www.trudellanimalhealth.com/learn/further-reading/side-effects-steroids-in-cats

